

PAQ-003-001543

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

October / November - 2018

Statistics: S - 502

(Mathematical Statistics) (Old Course)

Faculty Code: 003

Subject Code: 001543			
Time	: 2	$\frac{1}{2}$ Hours]	[Total Marks : 70
Insti	ructi	(2) (3) (4)	Question - 1 carries 20 marks. Question - 2 and Question - 3 carry 25 marks
1	Filling the blanks and short questions: (Each 1 mark) 20 (1) The range of partial regression coefficient is		
	(2)	is a characteristic function of Binomial distribution.	
	(3)	distributio	is a characteristic function of Chi-square on.
	(4)	t – distribution with 1 d.f. reduces to	
	(5)		rs Gama distribution with parameter p , then $3k_2^2$ is
	(6)		ependent variates $X_1 \sim \gamma\left(n_1\right)$ and $X_2 \sim \gamma\left(n_2\right)$, X_2 is distributed as
	(7)		combination of independent normal variates

- (8) For Normal distribution $\mu_4 = k_4 + 3k_2^2$ is ______.
- (9) If χ_1^2 and χ_2^2 are two independent Chi-square variates with d.f. \mathbf{n}_1 and \mathbf{n}_2 , respectively, then the distribution

of
$$\frac{\chi_1^2 / n_1}{\chi_2^2 / n_2}$$
 is _____.

- (10) If two independent variates $X_1 \sim \gamma(n_1)$ and $X_2 \sim \gamma(n_2)$ then $\frac{X_1}{X_1 + X_2}$ is distributed as ______.
- (11) Measured of Kurtosis coefficient for Normal distribution are ______.
- (12) Weibull distribution has application in ______.
- (13) If $X \sim N(0,1)$ and $Y \sim \chi_n^2$, then statistic $\frac{\sqrt{n}X}{\sqrt{Y}}$ is distributed as
- (14) A measure of linear association of a variable say, X_1 with a number of other variables X_2 , X_3 , X_4 , ..., X_k is known as _____.
- (15) ______ is a characteristic function of Normal distribution.
- (16) Define Bivariate Normal distribution.
- (17) Define Beta second kind distribution.
- (18) Write mean and variance of Gama distribution with parameter (α, p) .
- (19) Write mean and variance of Normal distribution.
- (20) Write mean and variance of Gama with parameter p distribution.
- 2 (a) Write the answers any three: (each 2 marks)
- 6

9

- (1) Define Beta first kind distribution.
- (2) Why characteristic function need?
- (3) Define Convergence in Probability.
- (4) Prove that, if $r_{12} = r_{13} = r_{23} = \rho$, then $r_{31.2} = \frac{\rho}{1+\rho}$
- (5) Prove that $b_{12.3} = \frac{b_{12} b_{13} b_{23}}{1 b_{13} b_{23}}$
- (6) In trivariate distribution it is found that $\mathbf{r}_{12}=0.77,\ \mathbf{r}_{13}=0.72$ and $\mathbf{r}_{23}=0.52$. Find (i) $\mathbf{r}_{12.3}$, and (ii) $\mathbf{R}_{1.23}$.
- (b) Write the answers any **three**: (each 3 marks)
 - (1) Usual notation of multiple correlation and multiple regression, prove that $\sigma_{1.23}^2 = \sigma_1^2 \left(1 r_{12}^2\right) \left(1 r_{13.2}^2\right)$.
 - (2) Obtain Probability density function for the characteristic function $\phi_X(t) = e^{-\left(\frac{1}{2}t^2\sigma^2\right)}$.

- (3) Define Exponential distribution and obtain its MGF. From MGF obtain its mean and variance.
- (4) Define truncated Binomial distribution and also obtain its mean and variance.
- (5) Usual notation of multiple correlation and multiple regression, prove that $b_{12} = \frac{b_{12.3} + b_{13.2} b_{32.1}}{1 b_{13.2} b_{31.2}}$.
- (6) Prove that $\mu_r = (-i)^r \left[\frac{d^r}{dt^r} \phi_u(t) \right]_{t=0}$; where $u = x \mu$.
- (c) Write the answers any two: (each 5 marks) 10
 - (1) Obtain marginal distribution of x for Bi-variate distribution.
 - (2) State and Prove that Chebchev's inequality.
 - (3) If x and y are independent χ^2 variates with n_1 and n_2 degree of freedom respectively then obtain distribution of $\frac{x}{x+y}$ and x+y.
 - (4) Drive t-distribution.
 - (5) Usual notation of multiple correlation and multiple

regression, prove that
$$R_{1.23}^2 = \frac{r_{12}^2 + r_{13}^2 - 2r_{12} r_{23} r_{13}}{1 - r_{23}^2}$$
.

- 3 (a) Write the answers any three: (each 2 marks) 6
 - (1) Define Log Normal distribution when $Y = \log_e(x a)$.
 - (2) Obtain characteristic function of Poisson distribution with parameter λ .
 - (3) Obtain relation between t and F distribution.
 - (4) Prove that $\phi_X(0) = 1$ and $|\phi_X(t)| \le 1$.
 - (5) Prove that,

$$\sigma_{3.12}^2 = \frac{\sigma_3^2 \left(1 - r_{12}^2 - r_{23}^2 - r_{13}^2 - 2r_{12} r_{23} r_{13}\right)}{\left(1 - r_{12}^2\right)}$$

(6) In trivariate distribution it is found that $\sigma_1 = 2$, $\sigma_2 = \sigma_3 = 3$, $r_{12} = 0.7$, $r_{23} = r_{31} = 0.5$. Find (i) $b_{13,2}$ and (ii) $\sigma_{3,12}$.

- (b) Write the answers any three: (each 3 marks)
- 9
- (1) Define truncated Poisson distribution and also obtain its mean and variance.
- (2) Obtain Harmonic mean of $X \sim \gamma(\alpha, p)$.
- (3) Obtain mean and variance of Uniform Distribution.
- (4) Prove that $\mu'_{r} = (-i)^{r} \left[\frac{d^{r}}{dt^{r}} \phi_{X}(t) \right]_{t=0}$
- (5) Usual notation of multiple correlation and multiple regression, prove that $r_{xy} + r_{yz} + r_{xz} \ge -\frac{3}{2}$.
- (6) Usual notation of multiple correlation and multiple regression, prove that $b_{12.3}b_{23.1}b_{31.2} = r_{12.3}r_{23.1}r_{31.2}$.
- (c) Write the answer any two: (each 5 marks)
- 10
- (1) Obtain relation between F and χ^2 .
- (2) Drive Normal distribution.
- (3) Obtain MGF of Gamma distribution with parameters α and p. Also show that $3\beta_1 2\beta_2 + 6 = 0$.
- (4) If the joint pdf of x and y is

$$f(x, y) = \frac{1}{2\pi} e^{-\frac{1}{2(1-\rho^2)} \left\{ x^2 - 2\rho xy + y^2 \right\}}$$

where $-\infty \le x, y \le \infty; -1 \le \rho \le 1$,

then find

- (i) Marginal distribution of y.
- (ii) Conditional distribution of x when y is given.
- (5) Usual notation of multiple correlation and multiple

regression, prove that
$$r_{12.3} = \frac{r_{12} - r_{13} r_{23}}{\sqrt{\left(1 - r_{13}^2\right)\left(1 - r_{23}^2\right)}}$$